Introduction to Leonard pairs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Leonard Pairs

Let K denote a field, and let V denote a vector space over K with finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear transformations A : V → V and A∗ : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There ex...

متن کامل

“Leonard Pairs” in Classical Mechanics

Ġ = {G,H}. In particular, the DV F is called an integral if it has zero PB with the Hamiltonian {F,H} = 0. In this case F does not depend on t. In many problems of the classical mechanics DV form elegant algebraic structures which are closed with respect to PB. The Poisson structures with non-linear PB were discussed in [9] and [6]. Sklyanin introduced [9] the so-called quadratic Poisson algebr...

متن کامل

Normalized Leonard pairs and Askey-Wilson relations

Let V denote a vector space with finite positive dimension, and let (A,A∗) denote a Leonard pair on V . As is known, the linear transformations A, A∗ satisfy the Askey-Wilson relations A 2 A ∗ − βAA ∗ A+A∗A2 − γ (AA∗+A∗A)− ̺A∗ = γ∗A2 + ωA+ η I, A ∗2 A− βA ∗ AA ∗+ AA∗2− γ∗(A∗A+AA∗)− ̺∗A = γA∗2+ ωA∗+ η∗I, for some scalars β, γ, γ∗, ̺, ̺∗, ω, η, η∗. The scalar sequence is unique if the dimension of V ...

متن کامل

Askey-Wilson relations and Leonard pairs

It is known that if (A,A∗) is a Leonard pair, then the linear transformations A, A∗ satisfy the Askey-Wilson relations A 2 A ∗ − βAA ∗ A + A∗A2 − γ (AA∗+A∗A) − ̺A∗ = γ∗A2 + ωA + η I, A ∗2 A− βA ∗ AA ∗+ AA∗2− γ∗(A∗A+AA∗) − ̺∗A = γA∗2+ ωA∗+ η∗I, for some scalars β, γ, γ∗, ̺, ̺∗, ω, η, η∗. The problem of this paper is the following: given a pair of Askey-Wilson relations as above, how many Leonard pai...

متن کامل

Leonard pairs and the Askey- Wilson relations

Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A : V → V and A : V → V which satisfy the following two properties: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2003

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(02)00600-3